Resilient Distributed Control of Multi-Microgrid Systems During Failure of Communication Infrastructure

Fredmar N. Asarias
Advanced Science and Technology Institute (ASTI)
Department of Science and Technology
Philippines

COMPUTING & ARCHIVING RESEARCH ENVIRONMENT

HPC

Processing of large data sets. High-speed calculations and analysis.

3,120 cores with 10Gbps network speed.

STORAGE SERVICE

Repository of scientific data. Short- to long-term data archiving support. Storage can handle large quantity of files (GB to TB).

SCIENCE CLOUD Delivers cloud-based services

to researchers and students. Enables private sharing of data among specific groups. Provisioning of Virtual Machines.

DATA CATALOG

Web portal for data gathered from CoARE research collaborations. Publicly accessible data sets. Supports open data for research and decisionsupport purposes.

OTHER SERVICES

Additional computational services from CoARE. Strategic Consultancy service. Porting and Software Installation Service.

Project NOAH Data

• 1.2 GB (right now using Science Cloud)

NOAH-WISE Data

 194 GB **PAGASA Data**

9.5 TB

Upcoming (2nd Qtr):

3000 Rice Genomes

Project (3kRG): 132

Data

TB

 PEDRO Data: 3 TB (annually)

 LiDAR Data: 104 TB

NASA Data: 12 TB

 CERN Data: 3.12 GB

ASTI Sensor Data

 No. of Records: ~115 M or 361 GB

Data

Multiple Data Integration

HPC Data

81 TB

Project NOAH makes use of ASTI's sensor data (1500++) in their modeling and visualization activities. These data are stored in CoARE's data repository.

Hosting of IRRI's 3,000 Rice Genome (3KRG) dataset with over 120TB of data which are publicly available.

APPLICATIONS RUNNING ON COARE:

- Flood modelling (Gerris)
- Molecular Dynamics (NAMD)
- Numerical Weather Prediction Modelling (WRF, CCAM)
- Climate Modelling (RegCM)
- Bioinformatics Pipeline (BWA, GTK)
- Storm Surge Modeling (Gaussian)
- DGC Services (WMS, WFS)

Other users:
•PAGASA numerical
modeling
•NOAHWISE/ASTI –
Operational WRF

Remote Sensing and Data Science (DATOS) Help Desk

May 1, 2017

Built-up Areas = 5.95 sq. km. (57.65%)

Smart Streetlights

- I. Introduction
- II. Smart Grids in Smart Cities
- III. Applications of Artificial Intelligence in Smart Grids
- IV. Resilient Distributed Control in Multi-Microgrid Systems
- V. Results
- VI. Conclusion

Smart Grid's Role in Smart Cities

- "Backbone" of smart cities
- Energy sustainability
- Reliability and efficiency
- Robustness and resilience of power systems

Challenges on complexity, uncertainty and huge volume of information [2]

Fig. 1: Smart Grid via IoT platform [1]

Artificial Intelligence in Smart Grids

Improving Reliability of Power Systems through Multi-Microgrid Systems

Fig. 2: Microgrid (MG) System [4]

Centralized [5]

- ✓ Easier System Monitoring
- X Single-Point Failure
- X Heavy Computational Burden

Distributed [5]

- ✓ No Single-Point Failure
- ✔ Reduced

Computational Burden

- ✓ Flexible (plug-and-play)
- X Complex

Communications

Communication Failure compromises system operation

of Cooperative Agents, IEEE Trans. Control Systems Technology

Resilient Distributed Control of Multi-Microgrid Systems

Fig. 2: Multi-Microgrid System Diagram

- Primary Control
 - tries to meet the least cost operation of the system using predicted values of missing parameters

$$\min_{P_G} \sum_{i \in \Omega_N} C_i (P_{G_i})$$

- Secondary Control
 - minimizes ENS (energy not served) in the system:
 - ensures supply-demand balance in the system

$$\min_{P_G, \theta_i} \sum_{i \in \Omega_N} ENS_i^2 = \min_{P_G, \theta_i} \sum_{i \in \Omega_N} \left(P_{G_i} - P_{L_i} - \frac{\theta_i - \theta_j}{X_{ij}} \right)^2$$

Prediction of Missing Information

- \triangleright Marginal Cost estimate, $\lambda_{j,est}(k)$
 - ➤ Naïve previous observed state
 - Historical Averaging

$$\lambda_{j,est}(k) = \frac{1}{N} \sum_{n=1}^{N} \lambda_{j_n}(k)$$

Forecast using Time Series ARIMA models – ARIMA (p, d, q)

$$\begin{aligned} y_t^{'} &= \mu + \phi_1 y_{t-1}^{'} + \ldots + \phi_p y_{t-p}^{} - \theta_1 e_{t-1}^{} - \ldots - \theta_q^{} e_{t-q}^{} \\ y_t^{'} &= \text{estimate} & \phi_p \text{ - AR coefficient} \\ \mu &= \text{constant} & \theta_q \text{ - MA coefficient} \\ y_{t-n} &= \text{lags} & e_{t-n}^{} - \text{error residual} \end{aligned}$$

AI (Machine Learning, Deep Learning) *

- \triangleright Bus Angle estimate, $\theta_{j,est}(k)$
 - With real-time line flow reading

$$\theta_{j,est}(k) = \theta_i(k) + P_{line,ij}(k) \cdot X_{ij}$$

 \triangleright Lagrange Multiplier for line flow estimate, $\mu_{ji,est}(k)$

$$\mu_{ji,est}(k) = P(\mu_{ji}(k) - \delta(\overline{P_{ij}} + P_{line,ij}(k)))$$

Results

Fig. 5: Comparison of power mismatch. (a) Primary Control, (b) Secondary Control

- Around 4.35kW power deficit in each
 Zero power mismatch in all microgrids microgrid (21.75 kW in total)

Results

Fig. 6: Cost of Information Loss of Different Network Configurations and Time-Series Estimation Methods

Fig. 7: Average Cost of Information Loss of different network configurations using the three estimation methods

Smart Grids in the Philippines

"Resilient Electricity Grids"

 Collaborative project between University of the Phillippines Diliman and University of California Berkeley

 Application of data science and machine learning for the resilience of electricity grids

- Research Opportunities for AI
 - Event detection (faults, attacks, islanding)
 - Electricity theft detection
 - Interruptible Load Program
 - Load Forecasting

Fig. 8: Micro-synchrophasor /uPMU (micro phasor measurement unit)
Image source: www.powerstandards.com

PMU Deployment

- Shift in paradigm in the power grid framework, control and operation (from load-following to supply-following)
- Data-driven power grids through massive deployment of measurement units
- Smart grids are one of the areas with great potential application of Artificial Intelligence (DL, RL, DRL)
- Many AI researches on smart grids are still in their initial stage

Thank you

Fredmar N. Asarias

Advanced Science and Technology Institute (ASTI) Department of Science and Technology, Philippines fredmar.asarias@asti.dost.gov.ph

